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Hello

I am an assistant professor at the Institute for Logic, Language and
Computation (University of Amsterdam). You can check some of my work
here https://probabll.github.io

Stuff I typically work on include

machine learning
approximate inference, gradient estimation
for deep latent variable models, VAEs, normalising flows

natural language processing
translation, text classification, question answering, transparent and
interpretable models
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Goals for this session

1 Recognise a probabilistic model

2 Think of models as tools to reproduce observed statistical patterns

3 Recognise that many DL models are statistical models

4 Recognise that datasets are recorded random experiments

5 Prescribe joint distributions over observed random variables

6 Parameterise distributions using neural networks

7 Estimate parameters via SGD

8 Use a probabilistic model of data to approach a task
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Probabilistic Models

Probabilistic Models

A probabilistic model prescribes the probability measure of a random
experiment.
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Random experiment: a sample space Ω, an event space Σ = P(Ω), and
a probability measure P : Σ → [0, 1] where P(∅) = 0, P(Ω) = 1 and
P(∪i∈IEi ) =

∑
i∈I P(Ei ) for collections {Ei} of pairwise disjoint events.

There are so many ways in which we can prescribe a probability measure:

• We may specify the probability of events in the event space, one at
a time. This is very tedious and sometimes impossible (e.g., all
subsets of natural numbers).

• We may instead specify a probability mass or density function (pmf
or pdf) for outcomes of a random variable X : Ω→ X ⊆ R.
The rv and its pdf in turn identify a probability measure.

• We may instead specify the cumulative distribution function (cdf) of
an rv, the cdf in turn identifies a pdf, the rv and its pdf identify a
probability measure.

• We may specify a simulator (e.g., a function from rand() to
outcomes of an rv), the simulator identifies an inverse cdf, which in
turn . . .
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0 if f (u) < −0.5
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Probabilistic Models

Probabilistic Modelling and Reasoning

Probabilistic modelling concerns the specification of a joint distribution
over random variables of interest.

Probabilistic reasoning concerns fixing a subset of these random variables
to some observations and inferring marginal and conditional distributions
by application of probability calculus.

The latter is also know as probabilistic inference.
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Notation. Capital letters for rvs (e.g., X , Y ), lowercase letters for assign-
ments (e.g., X = x , Y = y), calligraphic letters for range of rvs (e.g., X ,
Y). I use pX for the pdf of X and FX for its cdf. When needed I show
the dependency of the probability density on a parameter θ as follows:
pX (x |θ).

Probability calculus recap. Chain rule pXY (x , y) = pX (x)pY |X (y |x) =

pY (y)pX |Y (x |y). Conditional probability pY |X (y |x) = pXY (x,y)
pX (x) . Marginal-

isation pX (x) =
∫
Y pXY (x , y)dy .

If you would like to learn all about probabilistic graphical models (PGMs),
check the excellent book by Koller and Friedman (2009). I’d recommend
Part I (on representation of distributions) to anyone.



Probabilistic Models

Learning

Oftentimes, we begin specifying a probability distribution by specifying a
class of distributions (e.g., Normal, Exponential, Categorical).

For multivariate data, we also choose a factorisation of the joint
distribution.

Parameter estimation (e.g., maximum likelihood estimation) singles out a
member of the class (e.g., N (2, 1), Exponential(10), Cat(0.1, 0.2, 0.7)).
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Probabilistic Models

Deep Learning

Most modern ML models, including DL models, are probabilistic.

This is sometimes not obvious because DL literature often emphasises
implementation and algorithmic aspects over statistical considerations
about the data and the model.
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Example: a neural language model factorises the probability of a sequence
S using chain rule. For each step of the sequence from left to right, it
assigns probability for a word W given its complete history H, i.e.,

pS(〈x1, . . . , xI 〉|θ) =
I∏

i=1

pW |H(xi |x<i , θ)

where each conditional is a Categorical distribution predicted by an NN:

W |H = x<i ∼ Cat(f(x<i ; θ))

Typical algorithms for parameter estimation require assessing

pW |H(k|x<i , θ) = fk(x<i ; θ)

and its gradient, which take only a forward and a backward pass through
a tractable computation graph.
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Example: we use an LSTM decoder with input feeding and at each time
step the model is trained to predict the next target word via teacher forcing,
the model is trained to minimize the categorical cross entropy loss.
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Probabilistic Models

Zooming in and out

Implementation aspects are important for obvious reasons: ultimately one
has to implement a model that works! This requires being concrete about

the design of NN architecture blocks (e.g., encoder, decoder)

how to wire blocks together (e.g., residual connections)

how to train the model (e.g., objective, curriculum, optimiser)

and how to make predictions (e.g., beam search, sampling).

Many architectural differences have little statistical substance and
abstracting away from them helps us concentrate on issues that are
statistical in nature.
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Example I: LSTMs are superior to vanilla RNNs for they address numer-
ical problems with repeated application of the chain rule of derivatives.
That said, from a statistical standpoint, LSTMs and vanilla RNNs play
interchangeable roles (i.e., allow to condition on a sequence of arbitrary
length).

Example II: Dropout addresses overfitting in FFNNs, but leads to catas-
trophic forgetting in recurrent models. From a probabilistic perspective,
we can explain why dropout works and how to ‘fix it’ to support the re-
current case.

Dropout (Srivastava et al., 2014) is a technique where we randomly set
some inputs of a layer to 0. A special type of approximations to a Bayesian
model corresponds very closely to dropout (Gal and Ghahramani, 2016b)
and leads to extensions to more complex architecture blocks (Gal and
Ghahramani, 2016a,c).



Probabilistic Models

What are some advantages of probabilistic models?

Probabilistic models allows to incorporate assumptions through

the choice of distribution

dependencies among random variables

the way that distributions uses side information

stipulate unobserved data and their properties

They return a distribution over outcomes which can be used to

generate data

account for unobserved data

provide explanation and suggest improvements

inform decision makers
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Modelling Random Experiments

Modelling random experiments

We treat data as outcomes of experiments involving random variables.

A model of the data prescribes a distribution for those random variables.
Ideally, one that is faithful to statistical properties of our observations.
Applications:

reveal structure hidden in existing data;

support decisions about existing and future data.

The main subject of statistical interest is data (as opposed to tasks).
Think of a task as a potential application of a (good) model of the data.
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Modelling data does not imply solving a predictive task.

For example, a generative classifier is built upon a joint pdf pY (y)pX |Y (x |y)
over labels y ∈ Y and inputs x ∈ X . Making a specific prediction for a
novel input x∗ is a decision problem, oftentimes handled independently of
model specification and learning. A common decision rule for classification
is y∗ = arg maxy pY |X (y |x∗).



Modelling Random Experiments

Faithfulness

Deep Learning 2 @ UvA Introduction 10 / 52

Consider the data in the example

• the measurements are continuous and positive

• the sample mean is close to 32

• the sample stddev is close to 16

• they concentrate around a single value (unimodal)

• they stretch to the right (skew)
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Modelling Random Experiments

Hidden structure

A different probabilistic model may reveal the presence of two groups
mixed in a single population.

Deep Learning 2 @ UvA Introduction 11 / 52

Here the measurements are natural numbers, the sample mean is close to
12.5 and the median is 12.

A Poisson distribution can capture the mean, but not the spread (recall
that the Poisson mean and variance are equal).
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Modelling Random Experiments

Decisions about future data

The heavier tails of the Student’s t reserve much more probability for
unseen data.

Deep Learning 2 @ UvA Introduction 12 / 52

Here we observe continuous measurements from a sensor in a car. Data
come in in batches of 100 measurements.

Suppose that if 1% (or more) of the readings drop below 0, the driver is
at risk.
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Modelling Random Experiments

Modelling observed random variables

Our goal is to learn a distribution over a set of observed random variables.

Observed random variables are the result of random experiments that have
already happened: e.g., sentences in a collection of news articles, number
of stars in a product review.

Typical use in ML: conditional models.
B We are given some variables (inputs) and we are interested in making
predictions about other variables (outputs)

such inputs are also called predictors (or covariates)

with some probability, predicted by the model, an output takes on a
certain outcome in a sample space
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Modelling Random Experiments

Modelling conditionally - Examples

Predictor Outcome Sample space

Why did they bother record-
ing this???

? {?, ??, ? ? ?, ? ? ??, ? ? ? ? ?}

Source: geen standaard compare(‘no step’)=0.5 [0, 1]
MT: no standard

he proposed a famous solu-
tion to an inverse probability
problem in the 18th century

https://en.wikipedia.

org/wiki/Thomas_Bayes

Wen

Pepper loves the beach! Σ∗
en

That’s not possible! Dat is niet mogelijk! Σ∗
nl
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1. text classification

2. machine translation quality estimation

3. question answering

4. image captioning

5. machine translation

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes


Modelling Random Experiments

To model or not to model?

Oftentimes, a model sees some observations as deterministic predictors.
These are never modelled, they are only conditioned on:

if a variable is not modelled, our statistical model cannot assign a
probability to any observed value of that variable nor generate
random draws for that variable

the variable can, however, be used in some calculation

Example: a review in a sentiment classifier

some NN “reads it” to compute a probability distribution over
sentiment levels (e.g., negative, neutral, positive)

the model has no clue how reviews come about, it is only concerned
with reading them, not modelling their generative process
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Deterministic predictors are usually the kinds of input we talk about when
we mean ‘inputs at test time’ (e.g., the source sentence in MT).

An example of stochastic predictor is the prefix of already generated words
in a partial translation. The model can assign probability to those (for
example, in training), and it might even have generated those (for example,
in test). Once those outcomes are already in place, they act as predictors
so we can continue translating.



Modelling Random Experiments

What if we model all observations?

That is, including the predictors. Then we get joint or generative models.

Think of these models as models that can generate their own predictors
with some probability.

All previous examples can be modelled generatively.

Deep Learning 2 @ UvA Introduction 16 / 52

In some contexts, especially classification and regression, conditional mod-
els are called discriminative models.

Generative models are sometimes also called joint models.

Don’t get too caught up with the generative vs discriminative debate.
Again, different points of view will lead to different uses of these labels.
Some people will read ’discriminative’ as something about the training
algorithm, others as something about the nature of the distribution, others
just appeal to analogies or traditions, there are also cases where things get
tricky because of other disciplines (e.g., generative syntax in linguistics has
nothing to do with statistics, though generative syntactic formalisms can
be given statistical treatment, including via discriminative models).

For us, these are all probabilistic (or statistical) models.



Modelling Random Experiments

Joint modelling - Examples

Joint outcome Sample space

Why did they bother record-
ing this???

? Σ∗
en×{?, ??, ???, ????, ?????}

Source: geen standaard compare(‘no step’)=0.5 Σ∗
nl × Σ∗

en × [0, 1]
MT: no standard

he proposed a famous solu-
tion to an inverse probability
problem in the 18th century

https://en.wikipedia.

org/wiki/Thomas_Bayes

Σ∗
en ×Wen

Pepper loves the beach! [256, 256, 256]h×w × Σ∗
en

That’s not possible! Dat is niet mogelijk! Σ∗
en × Σ∗

nl
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The statistical model predicts a distribution over the sample space. Sam-
ple spaces can grow rather large, especially so when former deterministic
predictors are to be treated as random variables (that is, they are now part
of the random experiment we aim to predict).

https://en.wikipedia.org/wiki/Thomas_Bayes
https://en.wikipedia.org/wiki/Thomas_Bayes
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Modelling Observed Random Variables

Example - Music reviews

I downloaded some reviews from Amazon, this is what a datum looks like

We can observe the outcomes of many random variables here.
But do we care about all of them?
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Modelling Observed Random Variables

Example - Music reviews

I downloaded some reviews from Amazon, this is what a datum looks like

Let’s say we care about outcomes of overall score and let’s visualise the
observations available.
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Modelling Observed Random Variables

Example - Visualise data

Let’s say we take the overall score assigned to any one review as a random
variable (and ignore everything else in the dataset).
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The first thing to note is that we can observe many outcomes.

The second thing to note is that we can capture the general pattern using
a probability distribution.

For example, assume that overall scores are drawn from some Categorical
distribution. Which one? One option is to pick the one that makes these
observations as probable as possible. Or, equivalently, given the data and
the model family (Categorical), we pick the most likely parameter.

To derive an exact MLE for a Categorical likelihood you will need some
proficiency with partial derivatives and Lagrangian multipliers. It’s okay to
also just find the MLE on Wikipedia or in a textbook.
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Modelling Observed Random Variables

Example - Visualise data

Let’s say that overall scores are drawn from some Categorical distribution.
That’s fine, but which one?
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Modelling Observed Random Variables

Example - Visualise data

A member of the Categorical family of distributions is specified by a
parameter: a vector of dense positive values whose elements sum to 1.
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Modelling Observed Random Variables

Example - Visualise data

Let’s pick the one that makes our dataset as probable as possible. And
let’s assume that our observations were obtained independently.
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proficiency with partial derivatives and Lagrangian multipliers. It’s okay to
also just find the MLE on Wikipedia or in a textbook.



Modelling Observed Random Variables

Example - Visualise data

We are making an i.i.d. assumption and we have chosen a parametric
family for the model: Y1 ∼ Y2 ∼ · · · ∼ YN ∼ Cat(φ) with φ ∈ ∆5−1.
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Example - Visualise data

Thus Ly1:N
(φ) = p(y1:N |φ) =

∏N
i=1 Cat(yi |φ) =

∏N
i=1 φyi is the likelihood

of φ given the observed data y1:N .
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Example - Visualise data

MLE tells us to pick φ? such that
φ? = arg maxφ Ly1:N

(φ).
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Example - Visualise data

We call Ly1:N
(φ) the likelihood function, it is a function of φ for fixed data

and model family.
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Modelling Observed Random Variables

Example - Visualise data

We can equivalently search for φ under the log-likelihood function
Ly1:N

(φ) = log Ly1:N
(φ) and solve arg maxφ Ly1:N

(φ).
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Example - Visualise data

If you solve this, you will see that the maximum likelihood estimate of the
Categorical distribution is given by dividing the bars in the plot by N.
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Modelling Observed Random Variables

Example - Fit a Categorical likelihood model by MLE

This clearly captures the exact pattern we saw before. Does this level of
analysis meet the expectation of our target audience or do we need a more
fine grained picture?
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Whether we ‘meet the expectation of the audience’ is a matter of applica-
tion. From the point of view of the statistical model, the job is done.

If the user is interested in learning more about products, buyers, and their
relationship then this is probably insufficient.

For example, can we get a more fine grained picture if we condition on
some predictors?

Recall, the review record contained a lot more information.



Modelling Observed Random Variables

Example - Conditioning on predictors

Let’s see how overall scores distribute for some products

There is a certain amount of variance that is characteristic of how people feel

about the product. Modelling the data means modelling this variance, not

ignoring it!
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Can we say the first product is highly appreciated? Can we say the opposite
about the second one?

What can be said about the 3rd and the 4th?

Generally, what can be said is that committing to any overall score hides
variance present in the data.

Whereas for some purposes we may have to choose a single score for a
product, from the point of view of the statistical model that is not at all
the goal. The goal is to model the data well, that is, closely reproducing
statistical properties of the observed data (mean, variance, skew, ...).
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Modelling Observed Random Variables

Example - Conditioning on predictors

Let’s see how overall scores distribute for some reviewers

There is a certain amount of variance that is typical of a reviewer (e.g., some

people might not bother leaving a review unless they have a strong opinion).
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Note that no matter how we view the data, we still find variance.

Explanation 1: the data is the data is the data.

Explanation 2: noisy data.

We need to agree that noisy data is the data. Everything you observe
gets to be called data. There is no such a thing as noisy-free data and
no such a thing as outliers. If you get a dataset and remove outliers you
essentially created a different dataset that is artificially simpler. Besides, in
this application, you would be saying some people’s opinions don’t matter.
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Modelling Observed Random Variables

Example - Conditioning on high-dimensional predictors

Reviewers contribute long reviews, but also short summaries. These are short
enough that we can gather more than 20 different reviews per summary.
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Top-left: wow
Top-middle: ok
Top-right: what happened
Bottom-left: great album
Bottom-middle: fans can never be objective
Bottom-right: garbage

Some remarks:

• note the trends are quite different from the general trend

• note that we cannot always be very confident about the overall score
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Example - Conditioning on high-dimensional predictors

We could model the overall score Y given a summary X = s as a draw from the
summary-specific Categorical distribution Cat(φ(s)).
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Example - Conditioning on high-dimensional predictors

But then we would have to estimate as many Categorical distributions as there
are unique summaries. Clearly we will struggle in the future, when a novel
summary pops up.
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Modelling Observed Random Variables

Example - Very high-dimensional predictors

Consider a predictor like reviewText

We could not use it in the same way we used the summary. Given a
certain reviewText, we typically only get 1 data point making the problem
look deterministic. This is a fallacy though, it only looks deterministic
because of a modelling choice.
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If you are not convinced that the determinism is artificial, consider the
following thought experiment. Ask everyone in the classroom to assign
stars to a product based on a given review, what might you observe?

We cannot expect determinism, neither we should really look for it. Vari-
ance does not mean we are doing something wrong, the data are like that
indeed: we lack knowledge about all factors involved in the data generating
process.

Consider a person performing some annotation: variability can be result of
lapse in attention, long working hours, or simply inherent to the task.

Whereas determining logical entailment seems rather trivial (well, it still
depends on the excerpts of text we are given), translating is a much more
creative process.



Modelling Observed Random Variables

Machine learning and pattern recognition

Here is where things get interesting, even if a bit less well defined

We want to condition on rich predictors but we want to learn to identify
and exploit patterns that generalise a certain hidden aspect of the data
(e.g., how people relate products, their views, and a certain score).
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Why do I say this is a bit less well defined?

We are embracing the idea of learning patterns that are specific enough to
explain away most variance in the data, yet general enough to be reusable
in the future.

We are alluding to some notion of generalisation without a clear idea of
what it is or how to operationalise it.



Modelling Observed Random Variables

Example - Learning to use very rich predictors

Before DL was popular, we dealt with this mostly by identifying
informative features h(x) of the available predictor x . We would then map
these features to the parameter of a Categorical distribution (e.g., via a
log-linear model) on demand: Y |X = x ∼ Cat(softmax(Wh(x) + b)).

Nowadays, we tend to condition on everything available to us by
learning how to map from arbitrarily complex data to the parameters of
our distributions. We do so with NNs: Y |X = x ∼ Cat(f (x ; θ)).

There’s a lot of research on how to design f (·; θ) and estimate θ
effectively. DL1 and DL2 cover those aspects too!

Deep Learning 2 @ UvA Introduction 26 / 52
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In Y |X = x ∼ Cat(f (x ; θ)), f (·; θ) is a NN architecture with parameters
θ, it maps any covariate x , say a long review in English, to the parameters
of the Categorical distribution that by assumption govern the conditional
response variable.
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In Y |X = x ∼ Cat(f (x ; θ)), f (·; θ) is a NN architecture with parameters
θ, it maps any covariate x , say a long review in English, to the parameters
of the Categorical distribution that by assumption govern the conditional
response variable.



Modelling Observed Random Variables

Shallow statistical models

We have data y (1), . . . , y (N) generated by some unknown procedure which
we assume can be captured by a probabilistic model

with known probability (mass/density) function e.g.

Y ∼ Cat(φ1, . . . , φK ) or Y ∼ N (µ, σ2)

and estimate parameters of the pdf to attain maximum likelihood given
observations

Deep Learning 2 @ UvA Introduction 27 / 52

There are a few distributions for which we know the exact MLE solution,
for all others we can try our chances with gradient-based optimisation.
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Parameterisation by NNs

Let x be all side information available
e.g. inputs/features/predictors/covariates

Have neural networks predict parameters of our probabilistic model

Y |x ∼ Cat(f (x ; θ)) or Y |x ∼ N (µ(x ; θ), σ(x ; θ)2)

and proceed to estimate parameters θ of the NNs
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NNs compute the parameters of the statistical model. We estimate NN
parameters.

Now that we have NNs in the parameterisation, we will never be able to
derive a closed-form solution for the maximum likelihood estimate of the
NN parameters.
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Graphical model

Random variables

observed data
y (1), . . . , y (N)

Deterministic variables

predictors x (1), . . . , x (N)

non-random observed variable

model parameters θ
non-random and unobservable variable

y

x

θ

N
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For now we are taking the Frequentist point of view where parameters are
assumed known. Clearly we do not just happen to know the parameters of
a statistical model, though we may be able to make a somewhat informed
choice based of the available (training) data.

In Frequentism parameters are determined via optimisation of a likelihood-
based criterion. This is known as parameter estimation.

When we discuss Bayesian principles we will see that alternatively we may
acknowledge that parameters are random variables and that we don’t know
much about them (besides what can be coded in a choice of governing
distribution known as prior). Then we dispense with parameter estimation
altogether, rather using probabilistic inference to reason about quantities
of interest such as probability queries about unobserved random variables
given observed data. This is called posterior inference.
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Task-driven feature extraction

Often our side information is itself some high dimensional object

x is a sentence and y a tree

x is the source sentence and y is the target

x is an image and y is a caption

and part of the job of the NNs that parametrise our models is to also
deterministically encode that input in a low-dimensional space
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In representation learning, these encodings are the subject of interest, much
more than the model itself.

Example: word embedding models learn to predict probability distributions
over neighbouring words, but ultimately one only cares about the repre-
sentations of those words, which is internal to the parameterisation of the
distribution.

In fact, in representation learning we find many instances of deep learning
models that are not probabilistic.
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NN as efficient parametrisation

From a statistical point of view, NNs do not generate data

they parametrise distributions that
by assumption generated our data

compact and efficient way to map from complex side information to
parameter space
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From a statistical point of view, it is inconsequential whether you can do
anything useful with intermediate representations inside of an NN.

Example: word embeddings by word2vec are accidental from a statistical
point of view. The embeddings are not a unobserved random variable we
modelled, they are part of the specification of some other distribution. I
use the word ‘accidental’ just to get your attention. Clearly, the designer
engineered a specific task, and a specific classifier to get word2vec embed-
dings to be useful in the way they are. The designer exploited inductive
biases aimed at making embeddings function as if they captured lexical
semantics.

What I hope is that you will see that there are multiple, complementary,
ways to code inductive biases. Manipulating statistical properties of the
model is another one.



Modelling Observed Random Variables

It looks different, but is it?

The ability to predict a distribution per input efficiently makes it look like
everything changed, but did it?

We are asking our models the predict the observed pattern, but data
sparsity makes the response variable appear deterministic given the input.

We delegate to the NN the job of figuring out regularities in input space,
the degree to which we can influence what regularities will be captured (if
any) is somewhat limited to bottlenecks we plant in their design (i.e.,
architecture design).

MLE has not built-in pressure for generalisation.
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Modelling Observed Random Variables

Choosing a model family

1 data type: countable (binary, categorical, ordinal), uncountable,
univariate or multivariate, combinatorial, etc.

2 match properties of the data and distribution: overdispersion,
skewness, heavy tails

Deep Learning 2 @ UvA Introduction 33 / 52

• Don’t be mislead by the marginal if you intend to model
conditionally

• Do you expect variance to differ?

• Do you expect skew?

• Bounded support? Multimodality? Asymmetry?

• Unsure about categorical or ordinal treatment?
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Parameter Estimation

Maximum likelihood estimation

We have a probability model of a random variable Y , and this model may
condition on available covariates X . This model has parameters θ and
assigns probability p(y |x , θ) to an observation.

Given a dataset D = {(x (1), y (1)), . . . , (x (N), y (N))} of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter estimation

LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =
N∑

s=1

log p(y (s)|x (s), θ)

Deep Learning 2 @ UvA Introduction 34 / 52

I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).
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LD(θ) = log
N∏

s=1

p(y (s)|x (s), θ) =

N∑
s=1

log p(y (s)|x (s), θ)
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I may omit the subscripts from the pdfs whenever I find it unambiguous.
That is, I write p(y |x , θ) instead of pY |X (y |x , θ).
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Parameter Estimation

MLE via gradient-based optimisation

If the log-likelihood is differentiable and tractable
then backpropagation gives us the gradient

∇θLD(θ) =

∇θ

N∑
s=1

log p(y (s)|x (s), θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)

and we can update θ in the direction

γ∇θLD(θ)

to attain a local maximum of the likelihood function
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Differentiable

Consider the example of a Categorical likelihood:

• for a data point (x , y) the log-likelihood is
log Cat(y |f (x ; θ)) = log fy (x ; θ)
This shows that the Categorical likelihood Cat(y |f (x ; θ)) is
differentiable with respect to its parameter fy (x ; θ).

• To satisfy differentiability with respect to θ for any (x , y), we need
f (·; θ), to be differentiable with respect to θ in its domain (the
space X of all covariates).

Tractable The evaluation of f (x ; θ) is tractable for any x ∈ X .

Beyond Think about other likelihoods (e.g., Bernoulli, Binomial, Multino-
mial, Poisson, Geometric, Gaussian, Exponential, Gamma), can you imag-
ine differentiable and tractable parameterisations of the model?
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Parameter Estimation

Big Data

For large N, computing the gradient is inconvenient

∇θLD(θ) =
N∑

s=1

∇θ log p(y (s)|x (s), θ)︸ ︷︷ ︸
too many terms

=
N∑

s=1

1

N
N∇θ log p(y (s)|x (s), θ)

=
N∑

s=1

U(s|1/N)N∇θ log p(y (s)|x (s), θ)

= ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
S selects data points uniformly at random
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We are looking for a principled way to approximate the exact gradient.
Being principled here means enjoying some guarantees (this usually requires
satisfying certain properties, as we shall see).

Note that we introduced the notion of a stochastic gradient, a random
variable whose range is the space of gradient vectors of our model’s log-
likelihood function.

We have expressed the exact gradient as the expected value of that random
variable. Can you see how we are going to estimate it with a computation
that does not depend on N?
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Parameter Estimation

Stochastic optimisation

For large N, we can use a gradient estimate

∇θLD(θ) = ES∼U(1/N)

[
N∇θ log p(y (S)|x (S), θ)

]
︸ ︷︷ ︸

expected gradient :)

MC
≈ 1

M

M∑
m=1

N∇θ log p(y (sm)|x (sm), θ)

Sm ∼ U(1/N)

and take a step in the direction

γ
N

M
∇θLB(θ)︸ ︷︷ ︸

stochastic gradient

where B = {(x (s1), y (s1)), . . . , (x (sM), y (sM))} is a random mini-batch
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The theory of stochastic optimisation (Robbins and Monro, 1951) tells us
that we will converge to a local optimum of the objective as long as we take
steps that are correct on average. This means we can optimisation with
stochastic gradient estimates, for as long as they are unbiased estimates
of the exact gradient.

Do you see the guarantee and the condition?

There are more conditions, however. The learning rate must comply with
some key properties. Luckily many learning rate schedules have been docu-
mented in the literature, and most our famous optimisers meet the Robbis
and Monro conditions (though not all).

If you want to read more, but need something more accessible than the
1951 paper, check (Bottou, 2010).
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Parameter Estimation

DL in NLP recipe

Maximum likelihood estimation

tells you which loss to optimise
(i.e. negative log-likelihood)

Automatic differentiation (backprop)

“give me a tractable forward pass and I will give you gradients”

Stochastic optimisation powered by backprop

general purpose gradient-based optimisers
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How about binary cross entropy? Or Categorical cross-entropy? Or MSE?

Those are all (very) closely-related to the negative log-likelihood of a prob-
ability model under a certain choice of output distribution. There is no
need to memorise any such cross entropy, you can derive the correct ex-
pression from basic principles. It’s also easier to talk about and think
of it in terms of log-likelihood, as a ‘cross-entropy’ requires a non-trivial
understanding of the data in terms of observed distributions (rather than
observed outcomes).



Parameter Estimation

Constraints

Differentiability

intermediate representations must be continuous

activations must be differentiable

Tractability

the likelihood function must be evaluated exactly, thus it’s required to
be tractable
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Deciding under Uncertainty

How about tasks?

Some models support decision makers in performing predictions about
future data. These ‘tasks’ or downstream applications we find for our
models guide our design assumptions, but they normally have little impact
on the statistics of parameter estimation.

We train our model to reproduce statistical patterns of the data, and then
use them to make decisions.
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Some exceptions

• Loss-calibrated probabilistic inference

• Reinforcement learning



Deciding under Uncertainty

How would you decide in these cases?

You can pick one outcome, what will you pick?
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Deciding under Uncertainty

What task does MLE provide a decision rule for?

The task of assigning probability mass/density to a joint outcome of the
random variables of interest!

If the task you care about is not to assign probability mass/density, but
rather to return an outcome, you will have to come up with a decision rule
(i.e., an algorithm) for that.
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Deciding under Uncertainty

Decision rules

A decision rule is an algorithm for making decisions. If you have ever
designed a C -way classifier, you are familiar with the most probable class
rule.

MLE does not really imply a specific algorithm for decision making. So, we
chose our decision rules mostly axiomatically.

Statistical decision theory gives us a useful axiom when deciding under a
conditional distribution Y |X = x :

y? = arg max
c∈Y

E[u(Y , c)|X = x ]

= arg max
c∈Y

∫
Y
u(y , c)pY |X (y |x)
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A utility function u(y , c) assesses the benefit of choosing candidate c when
y is the correct response.

We do not know what responses are correct, so we compute the utility of a
candidate c against the entire conditional distribution, that is, we compute
the utility of c in expectation.

This is how we generalise the ‘most probable class‘ popular when deciding
under a Categorical distribution to other decision problems (e.g., deciding
under a Normal, or under a mixture of Poissons, or under a mixture of
Gammas, or under a simulator, or under a sequence model, or under a
graph model, etc.)

The decision rule that returns the mode of the conditional distribution is
obtained by using u(y , c) = [y = c].



Deciding under Uncertainty

Approximations

Depending on the utility function and on the factorisation of the model,
we may face challenges:

expected utility may be intractable to compute (e.g., mixture models,
autoregressive generators)

exact search may be intractable (e.g., combinatorial sample space)
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For sequence generators, a greedy approximation (beam search) to the
most probable sequence is very popular. For alternatives see (Eikema and
Aziz, 2021).

In general, we can always estimate expected utility via Monte Carlo. Exact
search is much more difficult to approximate (but see BayesOpt (Snoek
et al., 2012)).



Deciding under Uncertainty

Next class

Deep latent variable models with discrete latent variables

Exact inference

Approximate inference
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Appendix

Probability versus simulation: what came first?

Sometimes a model has a mechanism to generate random draws and this
mechanism could be used–in principle–to compute probability values, but
the computation is intractable. These are called implicit models or
simulators.

The alternative to an implicit model is a prescribed model. In this case
the model has an explicit mechanism to assess the probability value of a
given outcome. This means that–in principle–the model can also be used
to generate random draws, but sometimes this requires intractable
computations.

An example of the former is a GAN, an example of the latter is a
Boltzmann machine.
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Appendix

Inputs and outputs

Watch out! What is to be considered an input or an output depends on
who is doing the processing.

Point of view Input Output

Statistician domain knowledge model specification
data

Parameter estimation model specification parameters
observed data

Statistical model data probability distribution
Decision maker model specification decision

parameters
decision rule
novel data
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The statistician designs a model

Data can be used to estimate free parameters

The model predicts a distribution

Decisions are made based on the output of the model (a distribution).

Besides, NNs have inputs, they are encodings of variables that undergo
transformation (sometimes these inputs were not available from some
dataset of observations, they are outputs from the model via some de-
cision rule).

NNs have outputs, they can be thought of as alternative views of data
(encodings) or statistical parameters of distributions. But they are not
model outputs, nor outputs from the point of view of a specific application
(end user).



Appendix

Latent or Hidden?

For us, and for enough of the community out there, a latent variable is an
unobserved random variable. The two terms are equivalent.

The word hidden is more overloaded and we will simply avoid it
(except perhaps when talking about NN architecture design)

The hidden state of the classic Hidden Markov Model is a latent
variable

A hidden unit in an NN is seldom a latent variable. In fact most
hidden units are not at all unknown: it’s just that it takes a forward
pass through the network for one to be able to ‘see’ (or get to know)
them.
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In doubt, when talking about a latent variable you can simply emphasise
stochasticity by saying ‘unobserved random variable’ or ‘latent random
variable’ (to some the latter will sound repetitive, but not enough to sound
strange).



Appendix

Supervised, unsupervised, semi-, self-, . . .

Oh this is a difficult one! Just too many views, many reasonably logical.

I like to think of it as learning in the presence or absence of latent variables. If we
have unobserved random variables that stay unobserved throughout, that’s
unsupervised learning. If a subset of my unobserved variables become available as
observations, that’s semi-supervise. Otherwise it’s supervised.

But remember word2vec? Its inventor wanted to learn word embeddings (sounds
unsupervised, right?), but these are parameters of a binary classifier involving only
observed random variables. How about ’self-supervised’?

I could confuse you for the rest of your lives if I were to get into all proposals.

My advice: stay away from the debate, just be clear about what you do. And if
you can, stay coherent without being too confrontational.
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If I were to justify my point of view I would say it is model-centred (as
opposed to application-centred): that means I do not take the intended
use of the model into account in order to assign one such label. I only
consider the presence or absence of unobserved random variables.

In my view then something like word2vec, or anything by today’s standard
’self-supervised’, is supervised learning. That is, learning in the complete
absence of latent variables.

You can think of these terms from the point of view of the nature of
the random variables (observed, unobserved), or from the point of view
of the purpose of the model, or from the point of view of the type of
distribution, each view leads to a different way to assign the labels. And
there are more, some will say that transfer learning techniques lead to
semi-supervised models.

On self-supervised learning: note that it sounds like the learner (say the
model) found its own supervision, but really we (modellers) were the ones
to find a task for which a cheap-to-obtain observation leads to some rep-
resentation of the data that’s useful in other situations.



Appendix

Multiple problems, same language

yx θ

N

(Conditional) Density estimation

Predictor (x) Outcome (y)
Parsing a sentence its syntactic/semantic

parse tree/graph

Translation a sentence its translation

Captioning an image caption in English

Entailment a text and hypothesis entailment relation
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